Commercial fusion reactors are one of those things that are always 30 to 50 years ahead. They've been that way since the 1970s and nothing has changed much, at least until just recently.
A new design being developed at MIT could be in use by 2025, according to this article. That would put it 20 years ahead of the ITER project, which has been underway in France for close to 20 years.
If it succeeds, SPARC would be the first device to ever achieve a "burning plasma," in which the heat from all the fusion reactions keeps fusion going without the need to pump in extra energy. But no one has ever been able to harness the power of burning plasma in a controlled reaction here on Earth, and more research is needed before SPARC can do so. The SPARC project, which launched in 2018, is scheduled to begin construction next June, with the reactor starting operations in 2025. This is far faster than the world's largest fusion power project, known as the International Thermonuclear Experimental Reactor (ITER), which was conceived in 1985 but not launched until 2007; and although construction began in 2013, the project is not expected to generate a fusion reaction until 2035.
One advantage that SPARC may have over ITER is that SPARC's magnets are designed to confine its plasma. SPARC will use so-called high-temperature superconducting magnets that only became commercially available in the past three to five years, long after ITER was first designed. These new magnets can produce far more powerful magnetic fields than ITER's — a maximum of 21 teslas, compared with ITER's maximum of 12 teslas. (In comparison, Earth's magnetic field ranges in strength from 30 millionths to 60 millionths of a tesla.)
It does sound promising, but many other projects have made extravagant claims that never materialized.
No comments:
Post a Comment